Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516995

RESUMO

The need for therapeutics to treat a plethora of medical conditions and diseases is on the rise and the demand for alternative approaches to mammalian-based production systems is increasing. Plant-based strategies provide a safe and effective alternative to produce biological drugs but have yet to enter mainstream manufacturing at a competitive level. Limitations associated with batch consistency and target protein production levels are present; however, strategies to overcome these challenges are underway. In this study, we apply state-of-the-art mass spectrometry-based proteomics to define proteome remodelling of the plant following agroinfiltration with bacteria grown under shake flask or bioreactor conditions. We observed distinct signatures of bacterial protein production corresponding to the different growth conditions that directly influence the plant defence responses and target protein production on a temporal axis. Our integration of proteomic profiling with small molecule detection and quantification reveals the fluctuation of secondary metabolite production over time to provide new insight into the complexities of dual system modulation in molecular pharming. Our findings suggest that bioreactor bacterial growth may promote evasion of early plant defence responses towards Agrobacterium tumefaciens (updated nomenclature to Rhizobium radiobacter). Furthermore, we uncover and explore specific targets for genetic manipulation to suppress host defences and increase recombinant protein production in molecular pharming.

2.
Microbiol Spectr ; 12(3): e0284123, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329361

RESUMO

Cryptococcus neoformans is a human fungal pathogen responsible for fatal infections, especially in patients with a depressed immune system. Overexposure to antifungal drugs due to prolonged treatment regimens and structure-similar applications in agriculture have weakened the efficacy of current antifungals in the clinic. The rapid evolution of antifungal resistance urges the discovery of new compounds that inhibit fungal virulence determinants, rather than directly killing the pathogen, as alternative strategies to overcome disease and reduce selective pressure toward resistance. Here, we evaluated the efficacy of freshwater mussel extracts (crude and clarified) against the production of well-defined virulence determinants (i.e., thermotolerance, melanin, capsule, and biofilm) and fluconazole resistance in C. neoformans. We demonstrated the extracts' influence on fungal thermotolerance, capsule production, and biofilm formation, as well as susceptibility to fluconazole in the presence of macrophages. Additionally, we measured the inhibitory activity of extracts against commercial peptidases (family representatives of cryptococcal orthologs) related to fungal virulence determinants and fluconazole resistance, and integrated these phenotypic findings with quantitative proteomics profiling. Our approach defined distinct signatures of each treatment and validated a new mechanism of anti-virulence action toward the polysaccharide capsule from a selected extract following fractionation. By understanding the mechanisms driving the antifungal activity of mussels, we may develop innovative treatment options to overcome fungal infections and promote susceptibility to fluconazole in resistant strains. IMPORTANCE: As the prevalence and severity of global fungal infections rise, along with an increasing incidence of antifungal resistance, new strategies to combat fungal pathogens and overcome resistance are urgently needed. Critically, our current methods to overcome fungal infections are limited and drive the evolution of resistance forward; however, an anti-virulence approach to disarm virulence factors of the pathogen and promote host cell clearance is promising. Here, we explore the efficacy of natural compounds derived from freshwater mussels against classical fungal virulence determinants, including thermotolerance, capsule production, stress response, and biofilm formation. We integrate our phenotypic discoveries with state-of-the-art mass spectrometry-based proteomics to identify mechanistic drivers of these antifungal properties and propose innovative avenues to reduce infection and support the treatment of resistant strains.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Virulência , Criptococose/microbiologia , Fatores de Virulência , Macrófagos
3.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003422

RESUMO

Soybean cyst nematode (SCN, Heterodera glycines, Ichinohe) poses a significant threat to global soybean production, necessitating a comprehensive understanding of soybean plants' response to SCN to ensure effective management practices. In this study, we conducted dual RNA-seq analysis on SCN-resistant Plant Introduction (PI) 437654, 548402, and 88788 as well as a susceptible line (Lee 74) under exposure to SCN HG type 1.2.5.7. We aimed to elucidate resistant mechanisms in soybean and identify SCN virulence genes contributing to resistance breakdown. Transcriptomic and pathway analyses identified the phenylpropanoid, MAPK signaling, plant hormone signal transduction, and secondary metabolite pathways as key players in resistance mechanisms. Notably, PI 437654 exhibited complete resistance and displayed distinctive gene expression related to cell wall strengthening, oxidative enzymes, ROS scavengers, and Ca2+ sensors governing salicylic acid biosynthesis. Additionally, host studies with varying immunity levels and a susceptible line shed light on SCN pathogenesis and its modulation of virulence genes to evade host immunity. These novel findings provide insights into the molecular mechanisms underlying soybean-SCN interactions and offer potential targets for nematode disease management.


Assuntos
Tylenchoidea , Animais , /metabolismo , Tylenchoidea/fisiologia , Transcriptoma , Perfilação da Expressão Gênica , Doenças das Plantas/genética
4.
Cell Host Microbe ; 31(11): 1910-1920.e5, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37898126

RESUMO

Isolates of Cryptococcus neoformans, a fungal pathogen that kills over 112,000 people each year, differ from a 19-Mb reference genome at a few thousand up to almost a million DNA sequence positions. We used bulked segregant analysis and association analysis, genetic methods that require no prior knowledge of sequence function, to address the key question of which naturally occurring sequence variants influence fungal virulence. We identified a region containing such variants, prioritized them, and engineered strains to test our findings in a mouse model of infection. At one locus, we identified a 4-nt variant in the PDE2 gene that occurs in common laboratory strains and severely truncates the encoded phosphodiesterase. The resulting loss of phosphodiesterase activity significantly impacts virulence. Our studies demonstrate a powerful and unbiased strategy for identifying key genomic regions in the absence of prior information and provide significant sequence and strain resources to the community.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Camundongos , Humanos , Virulência/genética , Cryptococcus neoformans/genética , Criptococose/microbiologia , Fatores de Virulência/genética , Diester Fosfórico Hidrolases
5.
mSystems ; 8(5): e0049123, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37623324

RESUMO

IMPORTANCE: Pseudomonas aeruginosa is an important pathogen often associated with hospital-acquired infections and chronic lung infections in people with cystic fibrosis. P. aeruginosa possesses a wide array of intrinsic and adaptive mechanisms of antibiotic resistance, and the regulation of these mechanisms is complex. Label-free quantitative proteomics is a powerful tool to compare susceptible and resistant strains of bacteria and their responses to antibiotic treatments. Here we compare the proteomes of three isolates of P. aeruginosa with different antibiotic resistance profiles in response to five challenge conditions. We uncover unique and shared proteome changes for the widely used laboratory strain PAO1 and two isolates of the Liverpool epidemic strain of P. aeruginosa, LESlike1 and LESB58. Our data set provides insight into antibiotic resistance in clinically relevant Pseudomonas isolates and highlights proteins, including those with uncharacterized functions, which can be further investigated for their role in adaptive responses to antibiotic treatments.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Proteômica , Pseudomonas aeruginosa , Fibrose Cística/tratamento farmacológico , Antibacterianos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Proteoma
6.
Microbiol Resour Announc ; 12(7): e0025823, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37358435

RESUMO

The bacterial pathogen Klebsiella pneumoniae causes nosocomial infections with the acquisition of multidrug resistance, impeding treatment options. This study investigated the effect of zinc limitation on the phosphoproteome of K. pneumoniae using quantitative mass spectrometry. New insight is provided into cellular signaling methods used by the pathogen to respond to nutrient-limited environments.

7.
Microbiol Resour Announc ; 12(7): e0018623, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37358437

RESUMO

Klebsiella pneumoniae was compared across iron-limited and iron-replete conditions to assess changes within the phosphoproteome using quantitative mass spectrometry. These comparative proteomic data provide insights into cellular responses to nutrient limitation and how nutrient requirements may be exploited to provide potential antimicrobial targets.

8.
Nat Commun ; 14(1): 2761, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179332

RESUMO

The bactericidal function of neutrophils is dependent on a myriad of intrinsic and extrinsic stimuli. Using systems immunology approaches we identify microbiome- and infection-induced changes in neutrophils. We focus on investigating the Prenylcysteine oxidase 1 like (Pcyox1l) protein function. Murine and human Pcyox1l proteins share ninety four percent aminoacid homology revealing significant evolutionary conservation and implicating Pcyox1l in mediating important biological functions. Here we show that the loss of Pcyox1l protein results in significant reductions in the mevalonate pathway impacting autophagy and cellular viability under homeostatic conditions. Concurrently, Pcyox1l CRISPRed-out neutrophils exhibit deficient bactericidal properties. Pcyox1l knock-out mice demonstrate significant susceptibility to infection with the gram-negative pathogen Psuedomonas aeruginosa exemplified through increased neutrophil infiltrates, hemorrhaging, and reduced bactericidal functionality. Cumulatively, we ascribe a function to Pcyox1l protein in modulation of the prenylation pathway and suggest connections beween metabolic responses and neutrophil functionality.


Assuntos
Neutrófilos , Proteínas , Animais , Humanos , Camundongos , Camundongos Knockout , Oxirredutases/metabolismo , Proteínas/metabolismo
9.
Methods Mol Biol ; 2659: 161-169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249892

RESUMO

Deoxynivalenol (DON) is a destructive mycotoxin produced by the fungal pathogen Fusarium graminearum in the devastating cereal disease Fusarium head blight (FHB). Host resistance to FHB has been identified within some of these crops (e.g., wheat, barley, corn); however, identification of how the host reduces the production of, and tolerates, DON to lessen the effects of the disease still requires further discovery. The field of quantitative proteomics is an effective tool for measuring and quantifying host defense responses to external factors, including the presence of pathogens and toxins. Success within this area of research has increased through recent technological developments (e.g., instrument sensitivity) and the accessibility of data analysis programs. One advancement we leverage is the ability to label peptides with isobaric mass tags to allow for sample multiplexing, reducing mass spectrometer run times, and providing accurate quantification. In this protocol, we exemplify this methodology to identify protein-level responses to DON within both FHB-resistant and FHB-susceptible Triticum aestivum cultivars using tandem mass tags for quantitative labeling combined with liquid-chromatography-MS/MS (LC-MS/MS) analysis. Furthermore, this protocol can be extrapolated for the identification of host responses under various conditions, including infection and environmental fluctuations, to elucidate changes in proteomic profiling in diverse biological contexts.


Assuntos
Fusarium , Micotoxinas , Fusarium/fisiologia , Triticum/microbiologia , Grão Comestível/microbiologia , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Doenças das Plantas/microbiologia
10.
Methods Mol Biol ; 2659: 171-182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249893

RESUMO

Quantitative proteomics is a powerful method for distinguishing protein abundance changes in a biological system across conditions. In addition to recent advances in computational power and bioinformatics methods, improvements to sensitivity and resolution of mass spectrometry (MS) instrumentation provide an innovative approach for studying host-pathogen interaction dynamics and posttranslational modifications. In this protocol, we provide a workflow for state-of-the-art MS-based proteomics to assess changes in phosphorylated protein abundance upon interaction between the worldwide cereal crop, Triticum aestivum (wheat), and the global cereal crop fungal pathogen, Fusarium graminearum, during infection. This protocol mimics a time course of infection of T. aestivum by F. graminearum in the greenhouse, and the harvested samples undergo Fe-NTA phosphoenrichment combined with label-free quantification (LFQ) for detection by liquid-chromatography (LC)-coupled with tandem MS/MS. Our approach provides an in-depth view of changes in phosphorylation from both the host and pathogen perspectives in a single experiment across infection time points and different host cultivars.


Assuntos
Fusarium , Triticum , Triticum/microbiologia , Espectrometria de Massas em Tandem , Doenças das Plantas/microbiologia , Proteômica , Fusarium/metabolismo , Proteoma/metabolismo
11.
J Am Soc Mass Spectrom ; 34(9): 1928-1940, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37222660

RESUMO

Fungal pathogens are emerging threats to global health with the rise of incidence associated with climate change and increased geographical distribution; factors also influencing host susceptibility to infection. Accurate detection and diagnosis of fungal infections is paramount to offer rapid and effective therapeutic options. For improved diagnostics, the discovery and development of protein biomarkers presents a promising avenue; however, this approach requires a priori knowledge of infection hallmarks. To uncover putative novel biomarkers of disease, profiling of the host immune response and pathogen virulence factor production is indispensable. In this study, we use mass-spectrometry-based proteomics to resolve the temporal proteome of Cryptococcus neoformans infection of the spleen following a murine model of infection. Dual perspective proteome profiling defines global remodeling of the host over a time course of infection, confirming activation of immune associated proteins in response to fungal invasion. Conversely, pathogen proteomes detect well-characterized C. neoformans virulence determinants, along with novel mapped patterns of pathogenesis during the progression of disease. Together, our innovative systematic approach confirms immune protection against fungal pathogens and explores the discovery of putative biomarker signatures from complementary biological systems to monitor the presence and progression of cryptococcal disease.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Animais , Camundongos , Proteoma , Baço/metabolismo , Criptococose/microbiologia , Criptococose/prevenção & controle , Fatores de Virulência/metabolismo , Biomarcadores , Proteínas Fúngicas/metabolismo
12.
WIREs Mech Dis ; 15(4): e1610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37102189

RESUMO

The global burden of fungal disease poses a substantial threat to human, animal, and environmental health, endangering both human and livestock populations and creating vulnerabilities to food supplies world-wide. Antifungal drugs provide essential therapies to humans and animals against infections, while fungicides provide protection in agriculture. However, a limited arsenal of antifungal agents results in cross-use between agriculture and health, promoting the development of resistance, and drastically reducing our defenses against disease. Critically, antifungal resistant strains found ubiquitously within the natural environment demonstrate resistance to the same classes of antifungals used to treat human and animal infections, hindering effective treatment within the clinic. This interconnectivity supports the need for a One Health approach to combat fungal diseases and overcome antifungal resistance, ensuring that treatment and protection of a defined group does not inadvertently endanger or sacrifice other plants, animals, or humans. In this review, we present sources of antifungal resistance and discuss the integration of environmental and clinical resources to manage disease. Moreover, we explore opportunities for drug synergy and repurposing strategies, highlight fungal targets being investigated to overcome resistance, and propose technologies for the discovery of novel fungal targets. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.


Assuntos
Fungicidas Industriais , Micoses , Saúde Única , Animais , Humanos , Antifúngicos/farmacologia , Micoses/tratamento farmacológico , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica
13.
Sci Rep ; 13(1): 4928, 2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-36967422

RESUMO

The human fungal pathogen, Cryptococcus neoformans, is responsible for deadly infections among immunocompromised individuals with the evolution of antifungal resistance driving the solution to discover new compounds that inhibit fungal virulence factors rather than kill the pathogen. Recently, exploration into natural sources (e.g., plants, invertebrates, microbes) of antifungal agents has garnered attention by integrating a One Health approach for new compound discovery. Here, we explore extracts from three mollusk species (freshwater and terrestrial) and evaluate effects against the growth and virulence factor production (i.e., thermotolerance, melanin, capsule, and biofilm) in C. neoformans. We demonstrate that clarified extracts of Planorbella pilsbryi have a fungicidal effect on cryptococcal cells comparable to fluconazole. Similarly, all extracts of Cipangopaludina chinensis affect cryptococcal thermotolerance and impair biofilm and capsule production, with clarified extracts of Cepaea nemoralis also conveying the latter effect. Next, inhibitory activity of extracts against peptidases related to specific virulence factors, combined with stress assays and quantitative proteomics, defined distinct proteome signatures and proposed proteins driving the observed anti-virulence properties. Overall, this work highlights the potential of compounds derived from natural sources to inhibit virulence factor production in a clinically important fungal pathogen.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Fatores de Virulência/metabolismo , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Água Doce
14.
mBio ; 14(1): e0338422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749043

RESUMO

The fungal pathogen Cryptococcus neoformans is distinguished by a cell-wall-anchored polysaccharide capsule that is critical for virulence. Biogenesis of both cell wall and capsule relies on the secretory pathway. Protein secretion begins with polypeptide translocation across the endoplasmic reticulum (ER) membrane through a highly conserved channel formed by three proteins: Sec61, Sbh1, and Sss1. Sbh1, the most divergent, contains multiple phosphorylation sites, which may allow it to regulate entry into the secretory pathway in a species- and protein-specific manner. Absence of SBH1 causes a cell-wall defect in both Saccharomyces cerevisiae and C. neoformans, although other phenotypes differ. Notably, proteomic analysis showed that when cryptococci are grown in conditions that mimic aspects of the mammalian host environment (tissue culture medium, 37°C, 5% CO2), a set of secretory and transmembrane proteins is upregulated in wild-type, but not in Δsbh1 mutant cells. The Sbh1-dependent proteins show specific features of their ER targeting sequences that likely cause them to transit less efficiently into the secretory pathway. Many also act in cell-wall biogenesis, while several are known virulence factors. Consistent with these observations, the C. neoformans Δsbh1 mutant is avirulent in a mouse infection model. We conclude that, in the context of conditions encountered during infection, Sbh1 controls the entry of virulence factors into the secretory pathway of C. neoformans, and thereby regulates fungal pathogenicity. IMPORTANCE Cryptococcus neoformans is a yeast that causes almost 200,000 deaths worldwide each year, mainly of immunocompromised individuals. The surface structures of this pathogen, a protective cell wall surrounded by a polysaccharide capsule, are made and maintained by proteins that are synthesized inside the cell and travel outwards through the secretory pathway. A protein called Sbh1 is part of the machinery that determines which polypeptides enter this export pathway. We found that when Sbh1 is absent, both C. neoformans and the model yeast S. cerevisiae show cell-wall defects. Lack of Sbh1 also changes the pattern of secretion of both transmembrane and soluble proteins, in a manner that depends on characteristics of their sequences. Notably, multiple proteins that are normally upregulated in conditions similar to those encountered during infection, including several needed for cryptococcal virulence, are no longer increased. Sbh1 thereby regulates the ability of this important pathogen to cause disease.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas de Saccharomyces cerevisiae , Animais , Camundongos , Criptococose/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mamíferos/metabolismo , Polissacarídeos/metabolismo , Transporte Proteico , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Canais de Translocação SEC/genética , Translocação Genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Retículo Endoplasmático/metabolismo
15.
Nat Commun ; 14(1): 476, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717561

RESUMO

The adaptive immune response is under circadian control, yet, why adaptive immune reactions continue to exhibit circadian changes over long periods of time is unknown. Using a combination of experimental and mathematical modeling approaches, we show here that dendritic cells migrate from the skin to the draining lymph node in a time-of-day-dependent manner, which provides an enhanced likelihood for functional interactions with T cells. Rhythmic expression of TNF in the draining lymph node enhances BMAL1-controlled ICAM-1 expression in high endothelial venules, resulting in lymphocyte infiltration and lymph node expansion. Lymph node cellularity continues to be different for weeks after the initial time-of-day-dependent challenge, which governs the immune response to vaccinations directed against Hepatitis A virus as well as SARS-CoV-2. In this work, we present a mechanistic understanding of the time-of-day dependent development and maintenance of an adaptive immune response, providing a strategy for using time-of-day to optimize vaccination regimes.


Assuntos
COVID-19 , Relógios Circadianos , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Imunidade Adaptativa , Vacinação , Linfonodos
16.
J Vis Exp ; (190)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533849

RESUMO

Cryptococcus neoformans is an encapsulated human fungal pathogen with a global distribution that primarily infects immunocompromised individuals. The widespread use of antifungals in clinical settings, their use in agriculture, and strain hybridization have led to increased evolution of resistance. This rising rate of resistance against antifungals is a growing concern among clinicians and scientists worldwide, and there is heightened urgency to develop novel antifungal therapies. For instance, C. neoformans produces several virulence factors, including intra- and extra-cellular enzymes (e.g., peptidases) with roles in tissue degradation, cellular regulation, and nutrient acquisition. The disruption of such peptidase activity by inhibitors perturbs fungal growth and proliferation, suggesting this may be an important strategy for combating the pathogen. Importantly, invertebrates such as mollusks produce peptidase inhibitors with biomedical applications and anti-microbial activity, but they are underexplored in terms of their usage against fungal pathogens. In this protocol, a global extraction from mollusks was performed to isolate potential peptidase inhibitors in crude and clarified extracts, and their effects against classical cryptococcal virulence factors were assessed. This method supports the prioritization of mollusks with antifungal properties and provides opportunities for the discovery of anti-virulence agents by harnessing the natural inhibitors found in mollusks.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Humanos , Antifúngicos/farmacologia , Criptococose/microbiologia , Fatores de Virulência , Moluscos , Inibidores de Proteases/farmacologia
17.
Expert Rev Proteomics ; 19(4-6): 231-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36511641

RESUMO

The 13th annual Canadian National Proteomics Network was held in May 2022 in Montreal, Quebec, Canada. More than 175 individuals participated in this dynamic and productive meeting either in-person or virtually. A pre-symposium organized by trainees and dedicated to highlighting the best and brightest emerging talent in proteomics across Canada preceded the main symposium, which welcomed plenary and invited speakers from around the world. The presentations covering ground-breaking science were interspersed with critical discussions on improving equity, diversity, and inclusion within the proteomics community across Canada, along with important networking opportunities for early-career researchers.


Assuntos
Proteômica , Humanos , Canadá
18.
Nature ; 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414729
19.
Nat Chem Biol ; 18(12): 1399-1409, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36065018

RESUMO

Efflux pumps are a serious challenge for the development of antibacterial agents. Overcoming efflux requires an in-depth understanding of efflux pump functions, specificities and the development of inhibitors. However, the complexities of efflux networks have limited such studies. To address these challenges, we generated Efflux KnockOut-35 (EKO-35), a highly susceptible Escherichia coli strain lacking 35 efflux pumps. We demonstrate the use of this strain by constructing an efflux platform comprising EKO-35 strains individually producing efflux pumps forming tripartite complexes with TolC. This platform was profiled against a curated diverse compound collection, which enabled us to define physicochemical properties that contribute to transport. We also show the E. coli drug efflux network is conditionally essential for growth, and that the platform can be used to investigate efflux pump inhibitor specificities and efflux pump interplay. We believe EKO-35 and the efflux platform will have widespread application for the study of drug efflux.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Membrana Transportadoras/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla
20.
mBio ; 13(4): e0168722, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862772

RESUMO

The interactions between a host and microbe drive the health and disease status of the host. Of importance is the cause of dysbiosis in the presence of a pathogen, and critically, the relationship between the host and pathogen may evolve over time through response and adaptation. For immunocompromised individuals, dual infections are prevalent and contribute to disease severity and treatment options. Here, we explore the global reprogramming of host cells in response to immediate and established microbial infections with the human fungal pathogen Cryptococcus neoformans and the nosocomial bacterial pathogen Klebsiella pneumoniae. Using quantitative proteomics, we uncovered cross-kingdom protein-level changes associated with initial fungal infection, followed by a remarkable adaptation of the host and pathogen to a dormant state. This stabilization is disrupted over time upon bacterial infection, with the production of virulence-associated bacterial proteins and severely altered host response. We support our findings with the profiling of two major virulence determinants in C. neoformans, catalase and melanin, which demonstrate an interconnected regulation in response to both host defense and bacterial invasion. Overall, we report novel fungal and bacterial modulation of the host, including adaptation and stabilization, suggesting an opportunity to effectively treat dual infections by selectively targeting proteins critical to the host's infection stage. IMPORTANCE The relationship between the human microbiota and infectious disease outcome is a rapidly expanding area of study. Understanding how the host responds to changes in its symbiotic relationship with microbes provides new insight into how disruption can promote disease. In this study, we investigated the evolving relationship between innate immune cells of the host during immediate and established infections with fungal and bacterial pathogens, commonly observed within the lungs of immunocompromised individuals. We observed critical reprogramming of each biological system over time and in response to the changing environment, which influences microbial virulence. The goal of this important work is to improve our fundamental understanding of pathogenesis, as well as the regulatory relationships between hosts and microbes that drive disease outcome. We envision defining improved therapeutic treatment options for the host dependent on disease state to reduce the global impact and burden of infectious diseases, especially in the face of ever-increasing rates of antimicrobial resistance.


Assuntos
Infecção Hospitalar , Criptococose , Cryptococcus neoformans , Criptococose/microbiologia , Humanos , Macrófagos/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...